Reciprocal Phase Transition Electro-Optic Modulation
Spin-orbit torque efficiency improved by BiSePt alloy
Ge0.92Sn0.08/Ge multi-quantum-well LEDs operated at...
The Editorial
MSM UV photodetector with low dark current based on GaInO/ SrTiO3 heteroj...
Single-mode InGaAsP/InP BH lasers based on high-order slotted surface gra...
Phosphor-free micro-pyramid InGaN-based white light-emitting diode with a...
A Low Power BJT-Based CMOS Temperature Sensor Using Dynamic-Distributing-...
Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattic...
Doping a metal-organic framework material (ZIF-8) on a perovskite photoco...
官方微信
友情链接

Identification and Structural Characterization of Twisted Atomically Thin Bilayer Materials by Deep Learning

2024-03-12


Yang, Haitao; Hu, Ruiqi; Wu, Heng; He, Xiaolong; Zhou, Yan; Xue, Yizhe; He, Kexin; Hu, Wenshuai; Chen, Haosen; Gong, Mingming; Zhang, Xin; Tan, Ping-Heng; Hernández, Eduardo R.; Xie, Yong Source: Nano Letters, 2023;

Abstract:

Two-dimensional materials are expected to play an important role in next-generation electronics and optoelectronic devices. Recently, twisted bilayer graphene and transition metal dichalcogenides have attracted significant attention due to their unique physical properties and potential applications. In this study, we describe the use of optical microscopy to collect the color space of chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) and the application of a semantic segmentation convolutional neural network (CNN) to accurately and rapidly identify thicknesses of MoS2 flakes. A second CNN model is trained to provide precise predictions on the twist angle of CVD-grown bilayer flakes. This model harnessed a data set comprising over 10,000 synthetic images, encompassing geometries spanning from hexagonal to triangular shapes. Subsequent validation of the deep learning predictions on twist angles was executed through the second harmonic generation and Raman spectroscopy. Our results introduce a scalable methodology for automated inspection of twisted atomically thin CVD-grown bilayers.

© 2024 The Authors. Published by American Chemical Society. (59 refs.)




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明