Single-mode InGaAsP/InP BH lasers based on high-order slotted surface gra...
Phosphor-free micro-pyramid InGaN-based white light-emitting diode with a...
A Low Power BJT-Based CMOS Temperature Sensor Using Dynamic-Distributing-...
Migration-Enhanced Epitaxial Growth of InAs/GaAs Short-Period Superlattic...
Doping a metal-organic framework material (ZIF-8) on a perovskite photoco...
 Impurities related micro-defects in GaSb crystal grown by LEC method
Full-stokes polarization photodetector based on the chiral metasurface wi...
First-Principles Study of Schottky Barrier Heights on Metal/4H-SiC Polar ...
New Insights into the Interface Trap Generation during Hot Carrier Degrad...
Across-dimensional optical constellation de-aggregations from QAMs to PAM...
官方微信
友情链接

Spin-orbit torque efficiency improved by BiSePt alloy

2024-03-12


Author(s): He, HB (He, Hao-Bin); Lan, XK (Lan, Xiu-Kai); Ji, Y (Ji, Yang)

Source: ACTA PHYSICA SINICAVolume: 72Issue: 13  Article Number: 137201  DOI: 10.7498/aps.72.20230285  Published: JUL 5 2023

Abstract: In order to achieve high-efficiency spin-orbit torque devices, higher charge-spin conversion efficiency, and lower resistivity are required in the strong spin-orbit coupling layer that provides the spin current. In this work we prepare BiSePt alloy/Co heterostructures with in-plane magnetic anisotropy by magnetron sputtering deposition. The alloy layer is deposited via one of two procedures, either co-sputtering or alternative-sputtering. We study the BiSePt alloy samples and find that the spin orbit torque (SOT) efficiency decreases with the increase of Pt component, which is attributed to the change of topological order of Bi2Se3 amorphous surface, caused by Pt doping. And the resistivity decreases with the increase of Pt component, which depends on the increase of metallic property. Due to the balance of these two competing mechanisms, the spin Hall conductivity of the alloy layer varies non-monotonically with the concentration ratio, and reach an optimal value at a ratio of 67% of Bi2Se3 component. With the increase of the Bi2Se3 component, the SOT efficiency, electrical resistivity and spin Hall conductance of the alloy layer show different trends. At about 20%-70%, they increase/decrease tardily. At about 70%-100%, the resistivity ascends more prominently than the SOT efficiency, which leads the spin Hall conductance to decrease. Comparing with using the co-sputtering deposition, the electrical conductivity and spin Hall angle of the alloy layer obtained using alternating sputtering deposition are small, which is attributed to the enhancing of interfacial scattering and the filter effect of Pt on the spin flow. In contrast to traditional pure heavy metal materials (such as Pt, Ta) and topological insulator materials like Bi2Se3, our BiSePt alloy devices obtained by co-sputtering deposition achieve industry-matched preparation conditions, greater SOT efficiency, and considerable electrical conductivity of the alloy layer, thus making further applications of SOT devices possible.

Accession Number: WOS:001124206400011

ISSN: 1000-3290




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明