Design of off-axis aspheric four-mirror non-axial mechanical zoom optical...
High-performance SiO2-SiNx distributed Bragg reflectors fabricated by ion...
Design and analysis of a compact and broadband polarization beam splitter...
Vision-guided three-dimensional range-gated imaging based on epistemic un...
Microfaceting: A new logic for hot-carrier energy harvesting in hybrid pl...
Multifunctional Displays and Sensing Platforms for the Future: A Review o...
A miniprotein receptor electrochemical biosensor chip based on quantum dots
Analysis of the Thickness of Multilayered Porous Silicon in the Cold Emis...
An open dataset for human SSVEPs in the frequency range of 1-60 Hz
Single-Mode Surface-Emitting Polariton Lasing with Switchable Polarizatio...
官方微信
友情链接

New Insights into the Interface Trap Generation during Hot Carrier Degradation: Impacts of Full-band Electronic Resonance, (100) vs (110), and nMOS vs pMOS

2024-03-08


Wang, Zirui; Lu, Haoran; Sun, Zixuan; Shen, Cong; Peng, Baokang; Li, Wen-Feng; Xue, Yongkang; Wang, Da; Ji, Zhigang; Zhang, Lining; Liu, Yue-Yang; Jiang, Xiangwei; Wang, Runsheng; Huang, Ru Source: Technical Digest - International Electron Devices Meeting, IEDM, 2023, 2023 International Electron Devices Meeting, IEDM 2023;

Abstract:

In this paper, the underlying physics of interface trap generation in CMOS devices are revealed, by using full-band distribution of H atom electronic resonance states in Si-H bond at Si/SiO2 interface, instead of previously assumed single resonance level. The idea is verified and quantified by advanced time-dependent DFT (TDDFT) calculations. Based on this, the hot carrier degradation can be well modeled to surprisingly cover a broad range of technologies and stress conditions, due to the multiple peaks found in the full-band resonance states, and a TCAD simulation flow is proposed. The model is experimentally validated, from classic region (130nm Planar) to advanced region (16/14nm FinFET) and extendable to GAA, covering both (100) & (110) and n & p channels with various Vgs/Vds bias conditions. This work provides a universal understanding and efficient simulation framework for the hot carrier reliability.

© 2023 IEEE. (15 refs.)




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明