A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Vision-guided three-dimensional range-gated imaging based on epistemic uncertainty estimation

2024-03-07


Author(s): Liu, XQ (Liu, Xiaoquan); Niu, YY (Niu, Yangyang); Wang, XW (Wang, Xinwei)

Source: OPTICAL ENGINEERINGVolume: 62Issue: 12  DOI: 10.1117/1.OE.62.12.123105  Published: DEC 1 2023

Abstract: In recent years, vision-guided three-dimensional (3D) range-gated imaging has broken through the hardware limitations of traditional methods and brought new ideas to the field of 3D range-gated imaging. However, the existing approaches do not consider the uncertainty caused by incomplete training data, which make accuracy of the existing methods still possible for further improvement. In our work, we extend the well-known Gated2Depth framework using epistemic uncertainty by introducing Bayesian neural networks to provide uncertainty that does not exist in the input data due to incomplete training data. Finally, in the proof experiments, mean absolute error achieved 8.7% improvement on the night data and 9% improvement on the daytime data. The improvement of 3D range-gated imaging accuracy reduced the holes and blurred problems in the depth map and obtained sharper target edges.

Accession Number: WOS:001134884400007

ISSN: 0091-3286

eISSN: 1560-2303




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明