A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

A miniprotein receptor electrochemical biosensor chip based on quantum dots

2024-03-07


Author(s): Zhao, YN (Zhao, Yunong); Han, J (Han, Juan); Huang, J (Huang, Jing); Huang, Q (Huang, Qing); Tao, YB (Tao, Yanbing); Gu, RQ (Gu, Ruiqin); Li, HY (Li, Hua-Yao); Zhang, Y (Zhang, Yang); Zhang, HJ (Zhang, Houjin); Liu, H (Liu, Huan)

Source: LAB ON A CHIPDOI: 10.1039/d3lc01100c  Early Access Date: FEB 2024  

Abstract: Recently protein binders have emerged as a promising substitute for antibodies due to their high specificity and low cost. Herein, we demonstrate an electrochemical biosensor chip through the electronic labelling strategy using lead sulfide (PbS) colloidal quantum dots (CQDs) and the unnatural SARS-CoV-2 spike miniprotein receptor LCB. The unnatural receptor can be utilized as a molecular probe for the construction of CQD-based electrochemical biosensor chips, through which the specific binding of LCB and the spike protein is transduced to sensor electrical signals. The biosensor exhibits a good linear response in the concentration range of 10 pg mL-1 to 1 mu g mL-1 (13.94 fM to 1.394 nM) with the limit of detection (LOD) being 3.31 pg mL-1 (4.607 fM for the three-electrode system) and 9.58 fg mL-1 (0.013 fM for the HEMT device). Due to the high sensitivity of the electrochemical biosensor, it was also used to study the binding kinetics between the unnatural receptor LCB and spike protein, which has achieved comparable results as those obtained with commercial equipment. To the best of our knowledge, this is the first example of using a computationally designed miniprotein receptor based on electrochemical methods, and it is the first kinetic assay performed with an electrochemical assay alone. The miniprotein receptor electrochemical biosensor based on QDs is desirable for fabricating high-throughput, large-area, wafer-scale biochips.

We developed an on-chip laboratory for biomolecule interactions and kinetics analysis based on the three-electrode and high electron mobility transistor (HEMT) chip platform.

Accession Number: WOS:001165668900001

PubMed ID: 38372578

ISSN: 1473-0197

eISSN: 1473-0189




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明