In-Sensor Polarimetric Optoelectronic Computing Based on Gate-Tunable 2D ...
Multi-Color Detection of Single Sensor Based on Tellurium Relaxation Char...
Uncooled InAsSb- based high- speed mid- wave infrared barrier detector
High Frequency Mid-Infrared Quantum Cascade Laser Integrated With Grounde...
Multi-function sensing applications based on high Q-factor multi-Fano res...
High-power electrically pumped terahertz topological laser based on a sur...
Van der Waals polarity-engineered 3D integration of 2D complementary logic
Distinguishing the Charge Trapping Centers in CaF2-Based 2D Material MOSFETs
Influence of Growth Process on Suppression of Surface Morphological Defec...
High-Power External Spatial Beam Combining of 7-Channel Quantum Cascade L...
官方微信
友情链接

Epitaxy of Monoclinic VO2 on Large-Misfit 3m Template Enabled by a Metastable Interfacial Layer

2024-09-12


Author(s): Zhang, ZW (Zhang, Zhiwei); Li, XX (Li, Xingxing); Cheng, Y (Cheng, Yong); Li, B (Li, Bo); Wu, JL (Wu, Jinliang); Zhang, L (Zhang, Ling); Yin, ZG (Yin, Zhigang); Zhang, XW (Zhang, Xingwang)

Source: ACS OMEGA DOI: 10.1021/acsomega.4c03810  Early Access Date: JUL 2024  Published Date: 2024 JUL 1  

Abstract: We report the epitaxial growth of a monoclinic VO2 thin film on the CoFe2O4(111) template, assisted by an interfacial layer of the metastable orthorhombic phase. The interface between orthorhombic VO2 and CoFe2O4 is atomically sharp without noticeable interfacial diffusion. The (010)-faceted orthorhombic VO2 layer is lattice-matched to both the CoFe2O4(111) template and the monoclinic phase, although they have different surface symmetries. The occurrence of an orthorhombic VO2 thin layer significantly lowers the in-plane misfit strains of the monoclinic VO2 epilayer, along both the [100] and [001] axes. Our first-principles calculations confirm that the low-misfit orthorhombic VO2 is preferred on CoFe2O4(111) over the large-misfit monoclinic phase, at the initial growth stage. Additionally, upon increasing the film thickness to similar to 8 nm, the orthorhombic phase is no longer favored, and the bulk stable monoclinic VO2 appears to minimize the free energy of the system. Moreover, we show that the metal-to-insulator transition of our VO2 epilayer can be efficiently triggered by both the temperature and Joule self-heating effect.




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明