High-Performance Refractive Index and Temperature Sensing Based on Toroid...
Spatiotemporal-Dependent Confinement Effect of Bubble Swarms Enables a Fr...
Preface to Special Topic on Integrated Circuits, Technologies and Applica...
An ultra-wide-angle metasurface absorber operating in the ultraviolet to ...
Reversible phase transformations between Pb nanocrystals and a viscous li...
Selective area grown photonic integrated chips for completely suppressing...
Fusing differentiable rendering and language–image contrastive learning ...
Bidirectional Voltage Regulation for Integrated Photovoltachromic Device ...
Chip-encoded high-security classical optical key distribution
Design and Optimization of EAM for Data Center Optical Interconnects
官方微信
友情链接

Influence of Growth Process on Suppression of Surface Morphological Defects in 4H-SiC Homoepitaxial Layers

2024-09-12


Author(s): Pei, YC (Pei, Yicheng); Yuan, WL (Yuan, Weilong); Li, YK (Li, Yunkai); Guo, N (Guo, Ning); Zhang, XH (Zhang, Xiuhai); Liu, XF (Liu, Xingfang)

Source: MICROMACHINES Volume: 15  Issue: 6  Article Number: 665  DOI: 10.3390/mi15060665  Published Date: 2024 JUN  

Abstract: To address surface morphological defects that have a destructive effect on the epitaxial wafer from the aspect of 4H-SiC epitaxial growth, this study thoroughly examined many key factors that affect the density of defects in 4H-SiC epitaxial wafer, including the ratio of carbon to silicon, growth time, application of a buffer layer, hydrogen etching and other process parameters. Through systematic experimental verification and data analysis, it was verified that when the carbon-silicon ratio was accurately controlled at 0.72, the density of defects in the epitaxial wafer was the lowest, and its surface flatness showed the best state. In addition, it was found that the growth of the buffer layer under specific conditions could effectively reduce defects, especially surface morphology defects. This provides a new idea and method for improving the surface quality of epitaxial wafers. At the same time, we also studied the influence of hydrogen etching on the quality of epitaxial wafers. The experimental results show that proper hydrogen etching can optimize surface quality, but excessive etching may lead to the exposure of substrate defects. Therefore, it is necessary to carefully control the conditions of hydrogen etching in practical applications to avoid adverse effects. These findings have important guiding significance for optimizing the quality of epitaxial wafers.




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明