In-Sensor Polarimetric Optoelectronic Computing Based on Gate-Tunable 2D ...
Multi-Color Detection of Single Sensor Based on Tellurium Relaxation Char...
Uncooled InAsSb- based high- speed mid- wave infrared barrier detector
High Frequency Mid-Infrared Quantum Cascade Laser Integrated With Grounde...
Multi-function sensing applications based on high Q-factor multi-Fano res...
High-power electrically pumped terahertz topological laser based on a sur...
Van der Waals polarity-engineered 3D integration of 2D complementary logic
Distinguishing the Charge Trapping Centers in CaF2-Based 2D Material MOSFETs
Influence of Growth Process on Suppression of Surface Morphological Defec...
High-Power External Spatial Beam Combining of 7-Channel Quantum Cascade L...
官方微信
友情链接

Demultiplexing-free ultra-compact WDM-compatible multimode optical switch assisted by mode exchanger

2024-09-12


Author(s): Liu, SW (Liu, Siwei); Fu, X (Fu, Xin); Niu, JQ (Niu, Jiaqi); Huo, YJ (Huo, Yujie); Cheng, C (Cheng, Chuang); Yang, L (Yang, Lin)

Source: NANOPHOTONICS DOI: 10.1515/nanoph-2024-0201  Early Access Date: JUL 2024  Published Date: 2024 JUL 4  

Abstract: Silicon-based optical switches are integral to on-chip optical interconnects, and mode-division multiplexing (MDM) technology has enabled modes to function as carriers in routing, further boosting optical switches' link capacity. However, traditional multimode optical switches, which typically use Mach-Zehnder interferometer (MZI) structures and mode (de)multiplexers, are complex and occupy significant physical space. In this paper, we propose and experimentally demonstrate a novel demultiplexing-free dual-mode 3 x 3 thermal-optical switch based on micro-rings (MRs) and mode exchangers (MEs). All MRs are designed to handle TE1 mode, while the ME converts TE0 mode to TE1 mode, enabling separate routing of both modes. Bezier curves are employed to optimize not only the ME, but also the dual-mode 45 degrees and 90 degrees waveguide bends, which facilitate the flexible and compact layout design. Moreover, our structure can support multiple wavelength channels and spacings by adding pairs of MRs, exhibiting strong WDM compatibility. The switch has an ultra-compact footprint of 0.87 x 0.52 mm2. Under both "all-bar" and "all-cross" configurations, its insertion losses (ILs) remain below 8.7 dB at 1,551 nm, with optical signal-to-noise ratios (OSNRs) exceeding 13.0 dB. Also, 32 Gbps data transmission experiments validate the switch's high-speed transmission capability.




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明