In-Sensor Polarimetric Optoelectronic Computing Based on Gate-Tunable 2D ...
Multi-Color Detection of Single Sensor Based on Tellurium Relaxation Char...
Uncooled InAsSb- based high- speed mid- wave infrared barrier detector
High Frequency Mid-Infrared Quantum Cascade Laser Integrated With Grounde...
Multi-function sensing applications based on high Q-factor multi-Fano res...
High-power electrically pumped terahertz topological laser based on a sur...
Van der Waals polarity-engineered 3D integration of 2D complementary logic
Distinguishing the Charge Trapping Centers in CaF2-Based 2D Material MOSFETs
Influence of Growth Process on Suppression of Surface Morphological Defec...
High-Power External Spatial Beam Combining of 7-Channel Quantum Cascade L...
官方微信
友情链接

MLLM-SR: Conversational Symbolic Regression base Multi-Modal Large Language Models

2024-09-12


Li, Yanjie; Li, Weijun; Yu, Lina; Wu, Min; Liu, Jingyi; Li, Wenqiang; Hao, Meilan; Wei, Shu; Deng, Yusong Source: arXiv, June 8, 2024; E-ISSN: 23318422; DOI: 10.48550/arXiv.2406.05410; Repository: arXiv

Author affiliation:

AnnLab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China

Abstract:

Formulas are the language of communication between humans and nature. It is an important research topic of artificial intelligence to find expressions from observed data to reflect the relationship between each variable in the data, which is called a symbolic regression problem. The existing symbolic regression methods directly generate expressions according to the given observation data, and we cannot require the algorithm to generate expressions that meet specific requirements according to the known prior knowledge. For example, the expression needs to contain sin or be symmetric, and so on. Even if it can, it often requires very complex operations, which is very inconvenient. In this paper, based on multi-modal large language models, we propose MLLM-SR, a conversational symbolic regression method that can generate expressions that meet the requirements simply by describing the requirements with natural language instructions. By experimenting on the Nguyen dataset, we can demonstrate that MLLM-SR leads the state-of-the-art baselines in fitting performance. More notably, we experimentally demonstrate that MLLM-SR can well understand the prior knowledge we add to the natural language instructions. Moreover, the addition of prior knowledge can effectively guide MLLM-SR to generate correct expressions.




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明