A dragonfly-wings like self-powered magnetic field sensor with vibration ...
High-Density Electroencephalogram Facilitates the Detection of Small Stim...
Amino acid salt induced PbI2 crystal orientation optimization for high-ef...
Superhydrophobic films with high average transmittance in infrared and vi...
Effect of stress control by growth adjustment on the edge thread dislocat...
Strain-induced polarization modulation at GaN/Ti interface for flexible t...
Atomic Evolution Mechanism and Suppression of Edge Threading Dislocations...
Silicon-Based 850 nm GaAs/GaAsP-Strained Quantum Well Lasers with Active ...
Phase-locked single-mode terahertz quantum cascade lasers array
DT-SCNN: dual-threshold spiking convolutional neural network with fewer o...
官方微信
友情链接

QEPP: A Quantum Efficient Privacy Protection Protocol in 6G-Quantum Internet of Vehicles

2024-07-11


Author(s): Qu, ZG (Qu, Zhiguo); Chen, ZXA (Chen, Zhixiao); Ning, X (Ning, Xin); Tiwari, P (Tiwari, Prayag)

Source: IEEE TRANSACTIONS ON INTELLIGENT VEHICLES Volume: 9  Issue: 1  Pages: 905-916  

DOI: 10.1109/TIV.2023.3304852  Published Date: 2024 JAN  

Abstract: The increasing popularity of 6G communication within the Internet of Vehicles (IoV) ecosystem is expected to induce a surge in both user numbers and data volumes. This expansion will cause substantial challenges in ensuring network security and privacy protection, as well as in addressing the associated issue of inadequate cloud computing resources. In this article, we propose a Quantum Efficient Privacy Protection (QEPP) protocol that leverages reversible information hiding in quantum point clouds. This protocol utilizes quantum communication technology in edge-to-cloud communication of the IoV to transmit sensitive information embedded in quantum state data, thereby ensuring privacy protection. It employs quantum error-correction coding and efficient coding techniques to extract information and recover the carriers. In addition, the protocol utilizes an improved quantum Grover algorithm in the cloud to accelerate the processing speed of quantum data. By addressing security vulnerabilities and improving cloud-computing capabilities, the QEPP can effectively accommodate critical requirements, including precision, timeliness, and robust privacy protection.




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明