A miniprotein receptor electrochemical biosensor chip based on quantum dots
 Optimizing auxiliary laser heating for Kerr soliton microcomb generation
Assessing the Alignment Accuracy of State-of-the-Art Deterministic Fabric...
Helicity-dependent photocurrent of topological surface states in the intr...
Noncritical birefringence phase-matched second harmonic generation in a l...
A high-performance multi-wavelength optical switch based on multiple Fano...
A Flexible Bimodal Self-Powered Optoelectronic Skin for Comprehensive Per...
Strain-engineered magnon states in two-dimensional ferromagnetic monolaye...
Compositionally modulated perpendicular magnetic anisotropy in tetragonal...
Terahertz broadband tunable multifunctional metasurface based on VO2  ...
官方微信
友情链接

Defect-Assisted Photoemission in the hBN and TMDs/hBN Heterostructures

2024-03-21


Li, Yaolong; Jiang, Pengzuo; Liu, Xiulan; Wu, Heng; Lyu, Xiaying; Li, Xiaofang; Lin, Hai; Tang, Jinglin; Lyu, Qinghong; Yang, Hong; Wu, Chengyin; Lu, Guowei; Tan, Ping-Heng; Peng, Liang-You; Gao, Yunan; Hu, Xiaoyong; Gong, Qihuang Source: Journal of Physical Chemistry C, 2023;

Abstract:

Ultrafast electron pulses have broad applications in the investigation of the ultrafast dynamics of materials and near-field nanophotonics. A hexagonal boron nitride (hBN) photoemission source has been proposed recently, characterized by a nanoscale working area and high brightness. However, the photoemission mechanisms of hBN are still not clear because the wide bandgap and low electron density of states of hBN are believed to result in low photoemission brightness. Here, we experimentally demonstrated the defect-assisted two-photon photoemission process in hBN by electron microscopy. The laser-induced defect states work as intermediate states to enhance the photoemission process by transferring a two-photon process to a cascaded one-photon process. In addition, we proposed another strategy to improve the photoemission brightness by increasing the density of states with a narrow-bandgap, two-dimensional material stacked on hBN. The photoemission intensity of the monolayer transition metal dichalcogenides (TMDs)/hBN heterostructure was largely enhanced, whereas the emission angle and energy spread remained similar to hBN. However, the photoemission intensity of TMDs/hBN can be influenced negatively by laser-induced defect trapping from the actual intermediate energy levels of TMDs. The defect-assisted photoemission process and heterostructure stacking strategy proposed here are instructive for the design of next-generation photoemission sources.

© 2024 American Chemical Society. (46 refs.)




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明