Identification and Structural Characterization of Twisted Atomically Thin...
Low-Temperature Growth of InGaAs Quantum Wells Using Migration-Enhanced E...
All-Optical Format Conversion-Based Flexible Optical Interconnection Usin...
Resonances involving integer magnons and spin-1/2 excitations in a magnet...
Microwave-assisted unidirectional superconductivity in Al-InAs nanowire-A...
Local laser heating effects in diamond probed by photoluminescence of SiV...
A 0.013mm2 3.2ns Input Range 10-bit Cyclic Time-to-Digital Converter Usin...
Dynamic Band-Alignment Modulation in MoTe2/SnSe2 Heterostructure for High...
Tunable Narrowband Microwave Photonic Filter Using Stimulated Brillouin S...
InGaN-Based Whispering Gallery Mode Laser with Lateral Nanoporous Distrib...
官方微信
友情链接

A miniprotein receptor electrochemical biosensor chip based on quantum dots

2024-03-21


Zhao, Yunong; Han, Juan; Huang, Jing; Huang, Qing; Tao, Yanbing; Gu, Ruiqin; Li, Hua-Yao; Zhang, Yang; Zhang, Houjin; Liu, Huan Source: Lab on a Chip, 2024;

Abstract:

Recently protein binders have emerged as a promising substitute for antibodies due to their high specificity and low cost. Herein, we demonstrate an electrochemical biosensor chip through the electronic labelling strategy using lead sulfide (PbS) colloidal quantum dots (CQDs) and the unnatural SARS-CoV-2 spike miniprotein receptor LCB. The unnatural receptor can be utilized as a molecular probe for the construction of CQD-based electrochemical biosensor chips, through which the specific binding of LCB and the spike protein is transduced to sensor electrical signals. The biosensor exhibits a good linear response in the concentration range of 10 pg mL to 1 μg mL (13.94 fM to 1.394 nM) with the limit of detection (LOD) being 3.31 pg mL (4.607 fM for the three-electrode system) and 9.58 fg mL (0.013 fM for the HEMT device). Due to the high sensitivity of the electrochemical biosensor, it was also used to study the binding kinetics between the unnatural receptor LCB and spike protein, which has achieved comparable results as those obtained with commercial equipment. To the best of our knowledge, this is the first example of using a computationally designed miniprotein receptor based on electrochemical methods, and it is the first kinetic assay performed with an electrochemical assay alone. The miniprotein receptor electrochemical biosensor based on QDs is desirable for fabricating high-throughput, large-area, wafer-scale biochips.

© 2024 The Royal Society of Chemistry. (56 refs.)




关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明