A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

MAMGAN: Multiscale attention metric GAN for monaural speech enhancement in the time domain

2023-06-19
 Author(s): Guo, HM (Guo, Huimin); Jian, HF (Jian, Haifang); Wang, YQ (Wang, Yequan); Wang, HC (Wang, Hongchang); Zhao, XF (Zhao, Xiaofan); Zhu, WQ (Zhu, Wenqi); Cheng, QH (Cheng, Qinghua)
 
Source: APPLIED ACOUSTICS Volume: 209  Article Number: 109385  DOI: 10.1016/j.apacoust.2023.109385  Early Access Date: MAY 2023   Published: JUN 30 2023 
 
Abstract: In the speech enhancement (SE) task, the mismatch between the objective function used to train the SE model, and the evaluation metric will lead to the low quality of the generated speech. Although existing studies have attempted to use the metric discriminator to learn the alternative function of evaluation metric from data to guide generator updates, the metric discriminator's simple structure cannot better approximate the function of the evaluation metric, thus limiting the performance of SE. This paper proposes a multiscale attention metric generative adversarial network (MAMGAN) to resolve this problem. In the metric discriminator, the attention mechanism is introduced to emphasize the meaningful features of spatial direction and channel direction to avoid the feature loss caused by direct average pooling to better approximate the calculation of the evaluation metric and further improve SE's performance. In addition, driven by the effectiveness of the self-attention mechanism in capturing long-term dependence, we construct a multiscale attention module (MSAM). It fully considers the multiple representations of signals, which can better model the features of long sequences. The ablation experiment verifies the effectiveness of the attention metric discriminator and the MSAM. Quantitative analysis on the Voice Bank + DEMAND dataset shows that MAMGAN outperforms various time-domain SE methods with a 3.30 perceptual evaluation of speech quality score.
 
Accession Number: WOS:000997548200001
 
ISSN: 0003-682X
 
eISSN: 1872-910X


关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明