A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Automatic Monitoring Alarm Method of Dammed Lake Based on Hybrid Segmentation Algorithm

2023-06-19
 Author(s): Cai, ZM (Cai, Ziming); Sun, L (Sun, Liang); An, BS (An, Baosheng); Zhong, X (Zhong, Xin); Yang, W (Yang, Wei); Wang, ZY (Wang, Zhongyan); Zhou, Y (Zhou, Yan); Zhan, F (Zhan, Feng); Wang, XW (Wang, Xinwei)
 
Source: SENSORS Volume: 23  Issue: 10  Article Number: 4714  DOI: 10.3390/s23104714  Published: MAY 12 2023 
 
Abstract: Mountainous regions are prone to dammed lake disasters due to their rough topography, scant vegetation, and high summer rainfall. By measuring water level variation, monitoring systems can detect dammed lake events when mudslides block rivers or boost water level. Therefore, an automatic monitoring alarm method based on a hybrid segmentation algorithm is proposed. The algorithm uses the k-means clustering algorithm to segment the picture scene in the RGB color space and the region growing algorithm on the image green channel to select the river target from the segmented scene. The pixel water level variation is used to trigger an alarm for the dammed lake event after the water level has been retrieved. In the Yarlung Tsangpo River basin of the Tibet Autonomous Region of China, the proposed automatic lake monitoring system was installed. We pick up data from April to November 2021, during which the river experienced low, high, and low water levels. Unlike conventional region growing algorithms, the algorithm does not rely on engineering knowledge to pick seed point parameters. Using our method, the accuracy rate is 89.29% and the miss rate is 11.76%, which is 29.12% higher and 17.65% lower than the traditional region growing algorithm, respectively. The monitoring results indicate that the proposed method is a highly adaptable and accurate unmanned dammed lake monitoring system.
 
Accession Number: WOS:000997577500001
 
eISSN: 1424-8220


关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明