A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Gate-controlled hysteresis curves and dual-channel conductivity in an undoped Si/SiGe 2DEG structure

2023-03-06

 

Author(s): Zhang, D (Zhang, Di); Yuan, GD (Yuan, Guodong); Liu, YM (Liu, Yumeng); Li, Z (Li, Ze); Song, LH (Song, Luhang); Lu, J (Lu, Jun); Zhang, JY (Zhang, Jieyin); Zhang, JJ (Zhang, Jianjun); Luo, JW (Luo, Junwei)

Source: JOURNAL OF PHYSICS D-APPLIED PHYSICS Volume: 56 Issue: 8 Article Number: 085302 DOI: 10.1088/1361-6463/acb55e Published: FEB 23 2023

Abstract: Exploring the cryogenic transport properties of two-dimensional electron gas in semiconductor heterostructures is always a focus of fundamental research on Si-based gate-controlled quantum devices. In this work, based on the electrical and magnetic transport characteristics of Si/SiGe heterostructure Hall bar-shaped field effect transistors (FETs) at 10 K and 1.6 K, we study the effects of electron tunneling, which occurs in the heterostructure and populates the oxide/semiconductor interface, on its transport properties. The initial position of dual-channel conduction is determined by the gate-controlled electrical hysteresis curves. Furthermore, we discover that there exist different tunneling mechanisms of electrons in a Si quantum well under the action of gate voltage, and the electron tunneling can well explain the two drain current plateaus appearing in direct-current transfer characteristics. Combining the power-law exponent of electron mobility versus density curve and the gate-related Dingle ratio, we clarify the dominant scattering mechanism, and the result can be supported by different tunneling mechanisms. Our work demonstrates the gate-dependent electronic transport performance in undoped Si/SiGe heterostructure FETs, which has an implication for the development of Si/SiGe heterostructure gate-defined quantum dot quantum computation.

Accession Number: WOS:000928791100001

ISSN: 0022-3727

eISSN: 1361-6463

Full Text: https://iopscience.iop.org/article/10.1088/1361-6463/acb55e



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明