A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Phonon-Assisted Upconversion Photoluminescence of a Self-Trapped Exciton in the Rb2CuCl3 Single Crystal

2023-02-20

 

Author(s): Xu, KX (Xu, Kai-Xuan); Zhou, ZR (Zhou, Ziren); Zhang, J (Zhang, Jun)

Source: JOURNAL OF PHYSICAL CHEMISTRY LETTERS Volume: 14 Issue: 1 Pages: 32-37 DOI: 10.1021/acs.jpclett.2c03514 Published: JAN 12 2023

Abstract: Phonon-assisted upconversion photoluminescence (UCPL) plays an important role in a wide range of fields such as optical refrigeration, sensitive optical thermometry, quantum state control, and upconversion optoelectronics. High photoluminescence quantum yield (PLQY) and strong electron-phonon coupling are two basic prerequisites of efficient UCPL materials. The self-trapped exciton (STE) system with the above-mentioned advantages hints that it may be a good candidate for phonon-assisted UCPL. Here, we synthesized Rb2CuCl3 single crystals (SCs) which yield a high PLQY of the STE emission at 400 nm, and an efficient phonon-assisted UCPL was demonstrated at room temperature. By exponentially fitting the intensity of temperature -dependent UCPL spectra, we obtained an optical thermometry sensitivity of SCs up to 6 mK at 295 K. We also propose that net cooling would be possible if the PLQY is improved up to 91.5% with 345 nm excitation. Our results open a new door to explore laser cooling in STE systems.

Accession Number: WOS:000918921700001

PubMed ID: 36563108

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Zhang, Jun                  0000-0002-9831-6796

ISSN: 1948-7185

Full Text: https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03514



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明