A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Lightweight real-time stereo matching algorithm for AI chips

2023-02-17

 

Author(s): Liu, Y (Liu, Yi); Wang, WH (Wang, Wenhao); Xu, XT (Xu, Xintao); Guo, XZ (Guo, Xiaozhou); Gong, GL (Gong, Guoliang); Lu, HX (Lu, Huaxiang)

Source: COMPUTER COMMUNICATIONS Volume: 199 Pages: 210-217 DOI: 10.1016/j.comcom.2022.06.018 Published: FEB 1 2023

Abstract: AI chips have developed rapidly and achieved remarkable acceleration effects in the corresponding algorithm field in recent years. However, deep learning algorithms are changing rapidly, including many operators that AI chips and inference frameworks cannot use in the short term. To solve the problem that it is challenging to deploy a stereo matching algorithm based on binocular vision on AI chips, this paper proposes a multi-stage unsupervised lightweight real-time depth estimation algorithm for AI chips called TradNet. TradNet combines the traditional matching algorithm with a convolutional neural network and uses convolution directly supported by AI chips to realize the structure of the traditional matching algorithm. TradNet is composed of operators directly supported by current AI chips, which reduces the computational complexity of the algorithm, and greatly improves the compatibility of the stereo matching algorithm with existing AI chips. Compared with the deep learning-based multi-stage binocular disparity algorithm AnyNet, the accuracy is improved by 5.12%, and the inference speed is only 12.7%. Compared with the matching-based binocular disparity algorithm BM, the accuracy is improved by 25.24%, and the inference speed is only 48.7%. Our final model can process 1280x720 resolution images within a range of 60-80 FPS on an NVIDIA TITAN Xp. It achieves 28FPS on a 1TOPS (Tera Operations Per Second) custom AI chip, and the power consumption is 0.88 W.

Accession Number: WOS:000916921000001

ISSN: 0140-3664

eISSN: 1873-703X

Full Text: https://www.sciencedirect.com/science/article/pii/S0140366422002201?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明