A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

GRPAFusion: A Gradient Residual and Pyramid Attention-Based Multiscale Network for Multimodal Image Fusion

2023-02-14

 

Author(s): Wang, JX (Wang, Jinxin); Xi, XL (Xi, Xiaoli); Li, DM (Li, Dongmei); Li, F (Li, Fang); Zhang, GX (Zhang, Guanxin)

Source: ENTROPY Volume: 25 Issue: 1 Article Number: 169 DOI: 10.3390/e25010169 Published: JAN 2023

Abstract: Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignoring global dependencies and channel contexts. This paper proposes GRPAFusion, a multimodal image fusion framework based on gradient residual and pyramid attention. The framework uses multiscale gradient residual blocks to extract multiscale structural features and multigranularity detail features from the source image. The depth features from different modalities were adaptively corrected for inter-channel responses using a pyramid split attention module to generate high-quality fused images. Experimental results on public datasets indicated that GRPAFusion outperforms the current fusion methods in subjective and objective evaluations.

Accession Number: WOS:000915585300001

PubMed ID: 36673310

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

xi, xiao li                  0000-0002-7242-5695

Wang, Jinxin                  0000-0003-4205-7673

eISSN: 1099-4300

Full Text: https://www.mdpi.com/1099-4300/25/1/169



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明