A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Brain inspired optoelectronic integrated receiver chip for wireless optical communication

2022-12-29

 

Author(s): Xie, S (Xie, Sheng); Zhao, YH (Zhao, Yuhao); Wang, LH (Wang, Lihua); Cong, J (Cong, Jia); Mao, XR (Mao, Xurui)

Source: FRONTIERS IN PHYSICS Volume: 10 Article Number: 1069099 DOI: 10.3389/fphy.2022.1069099 Published: NOV 24 2022

Abstract: Inspired by the mechanism of visual attentional selection, a wireless optical communication (WOC) Integrated receiver consisting of a vertical double junction photodetector (VDJ-PD) and an attentional selection circuit (ASC) is presented. The whole receiver is fabricated in standard CMOS technology. The VDJ-PD can realize optical signal detection and wavelength identification. The attentional selection circuit activates the competition among the two PN junctions in VDJ-PD to select the signal with significant feature in real-time while discarding non-significant signals. A higher-order signal modulation scheme is applied by the proposed receiver to obtain a high transfer rate, and all data are decoded using color features. The optical testing results show that parallel and real-time communication of the red and blue light can be achieved, and the rise time is 4.47 mu s. To measure the anti-interference performance of the receiver, a water tank is used to simulate a harsh communication environment. Results indicate that the real-time and reliable communication requirements in a harsh channel condition are satisfied. When the percentage ratio between the intensity of stray light relative to the light with maximum intensity is 84%, an accurate information decoding can still be achieved. Moreover, the whole processing procedure does not require the participation of ADC, CPU and memory, consequently avoiding the von Neumann bottleneck.

Accession Number: WOS:000894576200001

ISSN: 2296-424X

Full Text: https://www.frontiersin.org/articles/10.3389/fphy.2022.1069099/full



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明