A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting

2022-12-29

 

Author(s): Liu, XA (Liu, Xiaonan); Qiao, SD (Qiao, Shunda); Han, GW (Han, Guowei); Liang, JX (Liang, Jinxing); Ma, YF (Ma, Yufei)

Source: PHOTOACOUSTICS Volume: 28 Article Number: 100422 DOI: 10.1016/j.pacs.2022.100422 Published: DEC 2022

Abstract: Due to its advantages of non-contact measurement and high sensitivity, light-induced thermoelastic spectroscopy (LITES) is one of the most promising methods for corrosive gas detection. In this manuscript, a highly sensitive hydrogen fluoride (HF) sensor based on LITES technique is reported for the first time. With simple structure and strong robustness, a shallow neural network (SNN) fitting algorithm is introduced into the field of spectroscopy data processing to achieve denoising. This algorithm provides an end-to-end approach that takes in the raw input data without any pre-processing and extracts features automatically. A continuous wave (CW) distributed feedback diode (DFB) laser with an emission wavelength of 1.27 mu m was used as the excitation source. A Herriott multi-pass cell (MPC) with an optical length of 10.1 m was selected to enhance the laser absorption. A quartz tuning fork (QTF) with resonance frequency of 32,767.52 Hz was adopted as the thermoelastic detector. An Allan variance analysis was performed to demonstrate the system stability. When the integration time was 110 s, the minimum detection limit (MDL) was found to be 71 ppb. After the SNN fitting algorithm was used, the signal-to-noise ratio (SNR) of the HF-LITES sensor was improved by a factor of 2.0, which verified the effectiveness of this fitting algorithm for spectroscopy data processing.

Accession Number: WOS:000891895000001

PubMed ID: 36386294

ISSN: 2213-5979

Full Text: https://www.sciencedirect.com/science/article/pii/S2213597922000878?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明