A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Narrow Linewidth Half-Open-Cavity Random Laser Assisted by a Three-Grating Ring Resonator for Strain Detection

2022-12-26

 

Author(s): Lv, B (Lv, Bing); Zhang, WT (Zhang, Wentao); Huang, WZ (Huang, Wenzhu); Li, F (Li, Fang); Li, YQ (Li, Yongqian)

Source: SENSORS Volume: 22 Issue: 20 Article Number: 7882 DOI: 10.3390/s22207882 Published: OCT 2022

Abstract: A stabilized narrow-linewidth random fiber laser for strain detection, based on a three-grating ring (TGR) resonator and half-open-cavity structure, is proposed and investigated experimentally. The half-open-cavity structure proved to provide double optical gain of erbium-doped fiber, which was beneficial to increase the photon lifetime as well as further narrow the linewidth. Meanwhile, the stability and frequency noise of narrow lasing output was improved by suppressing the competition-induced undesired residual random lasing modes with the TGR resonator. The TGR resonator is composed of a double-cavity fiber Bragg grating Fabry-Perot (FBG-FP) interferometer, a section of single-mode fiber, and a circulator. The specially designed double-cavity FBG-FP interferometer embedded in the TGR resonator acted as the strain-sensing element and improved the resolution of the dynamic strain. A stable ultra-narrow linewidth of about 205 Hz was obtained. The frequency noise was reduced to about 2 Hz/root Hz. A high dynamic strain measuring resolution of 35 femto-strain (f epsilon)/root Hz was achieved.

Accession Number: WOS:000875943000001

PubMed ID: 36298233

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Zhang, Wentao                  0000-0003-4869-6564

eISSN: 1424-8220

Full Text: https://www.mdpi.com/1424-8220/22/20/7882



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明