A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

High Efficiency and High Bandwidth Double-Cladding Waveguide Photodetector Array for 400 Gbit/s Communication

2022-11-15

 

Author(s): Xiao, F (Xiao, Fan); Ye, H (Ye, Han); Wang, S (Wang, Shuai); Chu, YM (Chu, Yimiao); Han, Q (Han, Qin)

Source: PHOTONICS Volume: 9 Issue: 10 Article Number: 703 DOI: 10.3390/photonics9100703 Published: OCT 2022

Abstract: A parallel array of 10 side-illuminated waveguide photodetectors (WGPDs) with double-cladding structure was designed and fabricated. In order to achieve high coupling efficiency to the fiber, the thicknesses of InGa0.24As0.53P cladding layers and In0.53Ga0.47As core layer were optimized. The array exhibited a uniform responsivity of 0.54 A/W at 1310 nm without anti-reflection (AR) coating and dark currents lower than 1.3 nA at -5 V. Each photodetector (PD) showed a bandwidth of over 30 GHz, amounting to 400 Gbit/s transmission capacity for the whole chip. In addition, numerical analysis showed that the fiber alignment tolerance to the chip edge along vertical and horizontal directions, when using a lensed fiber, were 1.8 mu m and 4.6 mu m, respectively. The simple fabrication, easy alignment capability and high performance make the photodetector array a competitive solution for future 400 Gbit/s parallel communication.

Accession Number: WOS:000873835000001

eISSN: 2304-6732

Full Text: https://www.mdpi.com/2304-6732/9/10/703



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明