A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

From cavity optomechanics to cavity-less exciton optomechanics: a review

2022-11-04

 

Author(s): Chang, HN (Chang, Haonan); Zhang, J (Zhang, Jun)

Source: NANOSCALE DOI: 10.1039/d2nr03784j Early Access Date: SEP 2022

Abstract: Cavity optomechanical coupling based on radiation pressure, photothermal forces and the photoelastic effect has been investigated widely over the past few decades, including optical measurements of mechanical vibration, dynamic backaction damping and amplification, nonlinear dynamics, quantum state transfer and so on. However, the delicate cavity operation, including cavity stabilization, fine detuning, tapered fibre access etc., limits the integration of cavity optomechanical devices. Dynamic backaction damping and amplification based on cavity-less exciton optomechanical coupling in III-V semiconductor nanomechanical systems, semiconductor nanoribbons and monolayer transition metal dichalcogenides have been demonstrated in recent years. The cavity-less exciton optomechanical systems interconnect photons, phonons and excitons in a highly integrable platform, opening up the development of integrable optomechanics. Furthermore, the highly tunable exciton resonance enables the exciton optomechanical coupling strength to be tuned. In this review, the mechanisms of cavity optomechanical coupling, the principles of exciton optomechanical coupling and the recent progress of cavity-less exciton optomechanics are reviewed. Moreover, the perspectives for exciton optomechanical devices are described.

Accession Number: WOS:000868608800001

PubMed ID: 36245359

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Zhang, Jun                  0000-0002-9831-6796

Chang, Haonan                  0000-0003-3251-9299

ISSN: 2040-3364

eISSN: 2040-3372

Full Text: https://pubs.rsc.org/en/content/articlelanding/2022/NR/D2NR03784J



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明