A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

FPGA-based design and implementation of the location attention mechanism in neural networks

2022-10-10

 

Author(s): Qiao, RX (Qiao, Ruixiu); Guo, XZ (Guo, Xiaozhou); Mao, WY (Mao, Wenyu); Li, JX (Li, Jixing); Lu, HX (Lu, Huaxiang)

Source: JOURNAL OF INTELLIGENT & FUZZY SYSTEMS Volume: 43 Issue: 4 Pages: 5309-5323 DOI: 10.3233/JIFS-212273 Published: 2022

Abstract: The location attention mechanism has been widely applied in deep neural networks. However, as the mechanism entails heavy computing workload, significant memories consumed for weights storage, and shows poor parallelism in some calculations, it is hard to achieve high efficiency deployment. In this paper, the field-programmable gate array (FPGA) is employed to implement the location attention mechanism in hardware, and a novel fusion approach is proposed to connect the convolutional layer with the fully connected layer, which not only improves the parallelism of both the algorithm and the hardware pipeline, but also reduces the computation cost for such operations as multiplication and addition. Meanwhile, the shared computing architecture is used to reduce the demand for hardware resources. Parallel computing arrays are utilized to time-multiplex a single computing array, which can speed up the pipeline parallel computing of the attention mechanism. Experimental results show that for the location attention mechanism, the FPGA's inference speed is 0.010 ms, which is around a quarter of the speed achieved by running it with GPU, and its power consumption is 1.73W, which is about 2.89% of the power consumed by running it with CPU. Compared with other FPGA implementation methods of attention mechanism, it has less hardware resource consumption and less inference time. When applied to speech recognition tasks, the trained attention model is symmetrically quantized and deployed on the FPGA. The result shows that the word error rate is only 0.79% higher than that before quantization, which proves the effectiveness and correctness of the hardware circuit.

Accession Number: WOS:000841691300096

ISSN: 1064-1246

eISSN: 1875-8967

Full Text: https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs212273



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明