A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy

2022-09-26

 

Author(s): Lin, FQ (Lin, Fang-Qi); Li, N (Li, Nong); Zhou, WG (Zhou, Wen-Guang); Jiang, JK (Jiang, Jun-Kai); Chang, FR (Chang, Fa-Ran); Li, Y (Li, Yong); Cui, SN (Cui, Su-Ning); Chen, WQ (Chen, Wei-Qiang); Jiang, DW (Jiang, Dong-Wei); Hao, HY (Hao, Hong-Yue); Wang, GW (Wang, Guo-Wei); Xu, YQ (Xu, Ying-Qiang); Niu, ZC (Niu, Zhi-Chuan)

Source: CHINESE PHYSICS B Volume: 31 Issue: 9 Article Number: 098504 DOI: 10.1088/1674-1056/ac615d Published: SEP 1 2022

Abstract: By optimizing the V/III beam-equivalent pressure ratio, a high-quality InAs/GaSb type-II superlattice material for the long-wavelength infrared (LWIR) range is achieved by molecular beam epitaxy (MBE). High-resolution x-ray diffraction (HRXRD), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectrometer are used to characterize the material growth quality. The results show that the full width at half maximum (FWHM) of the superlattice zero-order diffraction peak, the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks, and the surface roughness get the best results when the beam-equivalent pressure (BEP) ratio reaches the optimal value, which are 28 arcsec, 13 arcsec, and 1.63 angstrom, respectively. The intensity of the zero-order diffraction peak is strongest at the optimal value. The relative spectral response of the LWIR detector shows that it exhibits a 100% cut-off wavelength of 12.6 mu m at 77 K. High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.

Accession Number: WOS:000853992500001

ISSN: 1674-1056

eISSN: 2058-3834

Full Text: https://iopscience.iop.org/article/10.1088/1674-1056/ac615d



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明