Anisotropic Strain Relaxation in Semipolar (11(2)over-bar2) InGaN/GaN Superlattice Relaxed Templates
Author(s): Li, WL (Li, Wenlong); Wang, LS (Wang, Lianshan); Chai, RH (Chai, Ruohao); Wen, L (Wen, Ling); Wang, Z (Wang, Zhen); Guo, WG (Guo, Wangguo); Wang, HH (Wang, Huanhua); Yang, SY (Yang, Shaoyan)
Source: NANOMATERIALS Volume: 12 Issue: 17 Article Number: 3007 DOI: 10.3390/nano12173007 Published: SEP 2022
Abstract: Semipolar (11 (2) over bar2) InGaN/GaN superlattice templates with different periodical InGaN layer thicknesses were grown on m-plane sapphire substrates using metal-organic chemical vapor deposition (MOCVD). The strain in the superlattice layers, the relaxation mechanism and the influence of the strain relaxation on the semipolar superlattice template were explored. The results demonstrated that the strain in the (11 (2) over bar2) InGaN/GaN superlattice templates was anisotropic and increased with increasing InGaN thickness. The strain relaxation in the InGaN/GaN superlattice templates was related to the formation of one-dimension misfit dislocation arrays in the superlattice structure, which caused tilts in the superlattice layer. Whereas, the rate of increase of the strain became slower with increasing InGaN thickness and new misfit dislocations emerged, which damaged the quality of the superlattice relaxed templates. The strain relaxation in the superlattice structure improved the surface microtopography and increased the incorporation of indium in the InGaN epitaxial layers.
Accession Number: WOS:000851672000001
PubMed ID: 36080045
eISSN: 2079-4991
Full Text: https://www.mdpi.com/2079-4991/12/17/3007