A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Lower threshold current density of GaN-based blue laser diodes by suppressing the nonradiative recombination in a multiple quantum well

2022-09-06

 

Author(s): Liang, F (Liang, Feng); Zhao, DG (Zhao, Degang); Liu, ZS (Liu, Zongshun); Chen, P (Chen, Ping); Yang, J (Yang, Jing)

Source: OPTICS EXPRESS Volume: 30 Issue: 17 Pages: 31044-31057 DOI: 10.1364/OE.462843 Published: AUG 15 2022

Abstract: The influence of the nonradiative recombination in a multiple quantum well of GaN-based blue laser diodes (LDs) has been are studied experimentally and theoretically by analyzing the optical and electrical properties of LDs with various thickness and indium content of quantum wells (QWs). It is found that when keeping the LD emission wavelength nearly unchanged, the LD device performance with thinner QW and higher indium content of InGaN QWs is much better than the LD with thicker QW and lower indium content, having smaller threshold current density, higher output optical power and larger slope efficiency. Typically, the threshold current density is as low as 0.69 kA/cm(2), and the corresponding threshold current is only 250 mA. The lifetime is more than 10,000 hours at a fixed injection current of 1.2 A under a roomtemperature continuous-wave operation. Characteristics of photoluminescence (PL) microscopy images, temperature dependent PL spectra, time-resolved PL and electroluminescence spectra demonstrate that a reduction of the nonradiative recombination centers and an improvement of homogeneity in QWs are the main reason for the performance improvement of GaN-based LD using thinner QW layers with a higher indium content in a certain range. Moreover, theoretical calculation results demonstrate that using a thinner quantum well is also helpful for improving the device performance if the change of alloy material quality is considered during the calculation. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing

Accession Number: WOS:000842044600097

ISSN: 1094-4087

Full Text: https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-17-31044&id=490976



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明