A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

HCFNN: High-order coverage function neural network for image classification

2022-09-05

 

Author(s): Ning, X (Ning, Xin); Tian, WJ (Tian, Weijuan); Yu, ZY (Yu, Zaiyang); Li, WJ (Li, Weijun); Bai, X (Bai, Xiao); Wang, YB (Wang, Yuebao)

Source: PATTERN RECOGNITION Volume: 131 Article Number: 108873 DOI: 10.1016/j.patcog.2022.108873 Published: NOV 2022

Abstract: Recent advances in deep neural networks (DNNs) have mainly focused on innovations in network ar-chitecture and loss function. In this paper, we introduce a flexible high-order coverage function (HCF) neuron model to replace the fully-connected (FC) layers. The approximation theorem and proof for the HCF are also presented to demonstrate its fitting ability. Unlike the FC layers, which cannot handle high-dimensional data well, the HCF utilizes weight coefficients and hyper-parameters to mine under-lying geometries with arbitrary shapes in an n-dimensional space. To explore the power and poten-tial of our HCF neuron model, a high-order coverage function neural network (HCFNN) is proposed, which incorporates the HCF neuron as the building block. Moreover, a novel adaptive optimization method for weights and hyper-parameters is designed to achieve effective network learning. Compre-hensive experiments on nine datasets in several domains validate the effectiveness and generalizability of the HCF and HCFNN. The proposed method provides a new perspective for further developments in DNNs and ensures wide application in the field of image classification. The source code is available at https://github.com/Tough2011/HCFNet.git (c) 2022 Elsevier Ltd. All rights reserved.

Accession Number: WOS:000841964700003

ISSN: 0031-3203

eISSN: 1873-5142

Full Text: https://www.sciencedirect.com/science/article/pii/S0031320322003545?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明