A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Improved SPGD Algorithm for Optical Phased Array Phase Calibration

2022-08-29

 

Author(s): Wang, Z (Wang, Zheng); Yang, YB (Yang, Yibo); Wang, RT (Wang, Ruiting); Luo, GZ (Luo, Guangzhen); Wang, PF (Wang, Pengfei); Su, YM (Su, Yanmei); Pan, JQ (Pan, Jiaoqing); Zhang, YJ (Zhang, Yejin)

Source: APPLIED SCIENCES-BASEL Volume: 12 Issue: 15 Article Number: 7879 DOI: 10.3390/app12157879 Published: AUG 2022

Abstract: A chip-level optical beam steerer is an inevitable choice for next-generation light detection and ranging (LiDAR). The research on optical phased array (OPA) is the most intriguing. However, the complexity of control and calibration speed limit the full potential as the number of channels increases. In this paper, an improved stochastic parallel gradient-descent algorithm combined with the Nesterov accelerated gradient method (NSPGD) is presented and applied in a 512-channel OPA. This algorithm can reduce the phase calibration time of large-scale OPA and demonstrates a better convergence performance than traditional SPGD. Compared with the traditional SPGD and hill-climbing (HC) algorithm, optimized convergence performance of NSPGD is shown. The side mode suppression ratio (SMSR) of over 10dB for 512-channel OPA is obtained with the NSPGD algorithm, and the convergence speed is twice that of traditional SPGD. In addition, a temperature-controlled OPA is also studied to stabilize the whole calibration system.

Accession Number: WOS:000839290700001

eISSN: 2076-3417

Full Text: https://www.mdpi.com/2076-3417/12/15/7879



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明