A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

IRSDet: Infrared Small-Object Detection Network Based on Sparse-Skip Connection and Guide Maps

2022-08-16

 

Author(s): Xi, XL (Xi, Xiaoli); Wang, JX (Wang, Jinxin); Li, F (Li, Fang); Li, DM (Li, Dongmei)

Source: ELECTRONICS Volume: 11 Issue: 14 Article Number: 2154 DOI: 10.3390/electronics11142154 Published: JUL 2022

Abstract: Detecting small objects in infrared images remains a challenge because most of them lack shape and texture. In this study, we proposed an infrared small-object detection method to improve the capacity for detecting thermal objects in complex scenarios. First, a sparse-skip connection block is proposed to enhance the response of small infrared objects and suppress the background response. This block is used to construct the detection model backbone. Second, a region attention module is designed to emphasize the features of infrared small objects and suppress background regions. Finally, a batch-averaged biased classification loss function is designed to improve the accuracy of the detection model. The experimental results show that the proposed small-object detection framework significantly increases precision, recall, and F1-score, showing that, compared with the current advanced detection models for small-object detection, the proposed detection framework has better performance in infrared small-object detection under complex backgrounds. The insights gained from this study may provide new ideas for infrared small object detection and tracking.

Accession Number: WOS:000832276100001

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

xi, xiao li                  0000-0002-7242-5695

eISSN: 2079-9292

Full Text: https://www.mdpi.com/2079-9292/11/14/2154



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明