A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Extraction-Dominated Temperature Degradation of Population Inversion in Terahertz Quantum Cascade Lasers

2022-08-15

 

Author(s): Wu, YY (Wu, Yuyang); Zhang, JC (Zhang, Jinchuan); Zhao, YH (Zhao, Yunhao); Liang, CY (Liang, Chongyun); Liu, FQ (Liu, Fengqi); Shi, Y (Shi, Yi); Che, RC (Che, Renchao)

Source: SMALL Article Number: 2106943 DOI: 10.1002/smll.202106943 Early Access Date: JUL 2022

Abstract: Degraded population inversion (PI) at elevated temperature, regarded as an important temperature degradation factor in terahertz quantum cascade lasers (THz QCL), has hindered the widespread use of these devices. Herein, the mechanism of the temperature degradation of PI is investigated microscopically. It is demonstrated that the limited extraction efficiency of the extraction system dominates the decrease of PI at elevated temperatures. To be specific, the increased temperature brings about intense thermally activated longitudinal optical phonon scattering, leading to large amounts of electrons scattering to lower level state. In this case, the resonant-phonon extraction system is incapable of depleting all the electrons from lower level states. So even though the resonant-tunneling injection seems efficient enough to compensate the electron runoff at the upper state, the electron density at lower level state increases and the overall PI turns out lower. In addition, it is found that strong electron-ionized donor separation at high temperature can induce level misalignment, which can stagger the optimal conditions of injection and extraction. Also, the extraction efficiency gets lower as the extraction system requires accurate coupling between several energy levels.

Accession Number: WOS:000833907300001

PubMed ID: 35908810

ISSN: 1613-6810

eISSN: 1613-6829

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/smll.202106943



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明