A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

TiVCTx MXene/Chalcogenide Heterostructure-Based High-Performance Magnesium-Ion Battery as Flexible Integrated Units

2022-07-18

 

Author(s): Zhang, YM (Zhang, Yuming); Cao, JM (Cao, Jun-Ming); Yuan, ZY (Yuan, Zeyu); Xu, H (Xu, Hao); Li, DD (Li, Dongdong); Li, YL (Li, Yilin); Han, W (Han, Wei); Wang, LL (Wang, Lili)

Source: SMALL Article Number: 2202313 DOI: 10.1002/smll.202202313 Early Access Date: JUL 2022

Abstract: Magnesium-ion batteries (MIB) have gradually attracted attention owing to their high theoretical capacity, high safety, and low cost. A bimetallic metal-organic framework self-sacrificing template and a co-assembly strategy are used to prepare a high-performance, stable cycling NiSe2-CoSe2@TiVCTx (NCSe@TiVC) heterostructure MIB cathode that can be used as a flexible integrated unit to power future self-powered systems. Benefiting from the synergistic effect of TiVCTx MXene and NCSe, the NCSe@TiVC heterostructure electrode has a discharge-specific capacity of 136 mAh g(-1) at 0.05 A g(-1) and high cycling stability of over 500 cycles; the assembled pouch-cell device as flexible integrated unit exhibits good practicability. The magnesium ion storage mechanism is also validated using quantitative kinetic analysis, ex situ XRD, and XPS techniques. Density functional theory analysis indicates the most stable Mg-atom adsorption sites in the heterostructure. This study broadens the possibilities for applying the TiVCTx MXene heterostructure to energy storage materials and future self-powered flexible systems.

Accession Number: WOS:000819557200001

PubMed ID: 35775923

ISSN: 1613-6810

eISSN: 1613-6829

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/smll.202202313



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明