A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Multicore Photonic Complex-Valued Neural Network with Transformation Layer

2022-07-12

 

Author(s): Wang, RT (Wang, Ruiting); Wang, PF (Wang, Pengfei); Lyu, C (Lyu, Chen); Luo, GZ (Luo, Guangzhen); Yu, HY (Yu, Hongyan); Zhou, XL (Zhou, Xuliang); Zhang, YJ (Zhang, Yejin); Pan, JQ (Pan, Jiaoqing)

Source: PHOTONICS Volume: 9 Issue: 6 Article Number: 384 DOI: 10.3390/photonics9060384 Published: JUN 2022

Abstract: Photonic neural network chips have been widely studied because of their low power consumption, high speed and large bandwidth. Using amplitude and phase to encode, photonic chips can accelerate complex-valued neural network computations. In this article, a photonic complex-valued neural network (PCNN) chip is designed. The scale of the single-core PCNN chip is limited because of optical losses, and the multicore architecture of the chip is used to improve computing capability. Further, for improving the performance of the PCNN, we propose the transformation layer, which can be implemented by the designed photonic chip to transform real-valued encoding to complex-valued encoding, which has richer information. Compared with real-valued input, the transformation layer can effectively improve the classification accuracy from 93.14% to 97.51% of a 64-dimensional input on the MNIST test set. Finally, we analyze the multicore computation of the PCNN. Compared with the single-core architecture, the multicore architecture can improve the classification accuracy by implementing larger neural networks and has better phase noise robustness. The proposed architecture and algorithms are beneficial to promote the accelerated computing of photonic chips for complex-valued neural networks and are promising for use in many applications, such as image recognition and signal processing.

Accession Number: WOS:000816348800001

eISSN: 2304-6732

Full Text: https://www.mdpi.com/2304-6732/9/6/384



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明