A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

LPG-PCFG: An Improved Probabilistic Context- Free Grammar to Hit Low-Probability Passwords

2022-07-11

 

Author(s): Guo, XZ (Guo, Xiaozhou); Tan, KJ (Tan, Kaijun); Liu, Y (Liu, Yi); Jin, M (Jin, Min); Lu, HX (Lu, Huaxiang)

Source: SENSORS Volume: 22 Issue: 12 Article Number: 4604 DOI: 10.3390/s22124604 Published: JUN 2022

Abstract: With the development of the Internet, information security has attracted more attention. Identity authentication based on password authentication is the first line of defense; however, the password-generation model is widely used in offline password attacks and password strength evaluation. In real attack scenarios, high-probability passwords are easy to enumerate; extremely low-probability passwords usually lack semantic structure and, so, are tough to crack by applying statistical laws in machine learning models, but these passwords with lower probability have a large search space and certain semantic information. Improving the low-probability password hit rate in this interval is of great significance for improving the efficiency of offline attacks. However, obtaining a low-probability password is difficult under the current password-generation model. To solve this problem, we propose a low-probability generator-probabilistic context-free grammar (LPG-PCFG) based on PCFG. LPG-PCFG directionally increases the probability of low-probability passwords in the models' distribution, which is designed to obtain a degeneration distribution that is friendly for generating low-probability passwords. By using the control variable method to fine-tune the degeneration of LPG-PCFG, we obtained the optimal combination of degeneration parameters. Compared with the non-degeneration PCFG model, LPG-PCFG generates a larger number of hits. When generating 107 and 108 times, the number of hits to low-probability passwords increases by 50.4% and 42.0%, respectively.

Accession Number: WOS:000817501700001

PubMed ID: 35746386

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Liu, Yi                  0000-0003-3056-7713

eISSN: 1424-8220

Full Text: https://www.mdpi.com/1424-8220/22/12/4604



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明