Phonon and Exciton Properties between WS2 and MoS2 Layers via Inversion Heterostructure Engineering
Author(s): Yang, MM (Yang, Ming-Ming); Leng, YC (Leng, Yu-Chen); Liu, YL (Liu, Yan-Liang); Liu, Y (Liu, Yi); Zhao, YN (Zhao, Ya-Nan); Tan, L (Tan, Li); Hu, XW (Hu, Xiao-Wen); Lian, RQ (Lian, Ru-Qian); Liu, XL (Liu, Xue-Lu); Cong, RD (Cong, Ri-Dong); Sun, SS (Sun, Shi-Shuai); Li, XL (Li, Xiao-Li)
Source: ACS APPLIED MATERIALS & INTERFACES Volume: 14 Issue: 16 Pages: 19012-19022 DOI: 10.1021/acsami.1c24368 Published: APR 27 2022
Abstract: Recently, two-dimensional (2D) van der Waals heterostructures (vdWHs) have exhibited emergent electronic and optical properties due to their peculiar phonons and excitons, which lay the foundation for the development of photoelectronic devices. The dielectric environment plays an important role in the interlayer coupling of vdWHs. Here, we studied the interlayer and extra-layer dielectric effects on phonon and exciton properties in WS2/MoS2 and MoS2/WS2 vdWHs by Raman and photoluminescence (PL) spectroscopy. The ultralow frequency (ULF) Raman modes are insensitive to atomic arrangement at the interface between 1LW and 1LM and dielectric environments of neighboring materials, and the layer breathing mode (LBM) frequency follows that of WS2. The shift of high-frequency (HF) Raman modes is attributable to interlayer dielectric screening and charge transfer effects. Furthermore, the energy of interlayer coupling exciton peak I is insensitive to atomic arrangement at the interface between 1LW and 1LM and its energy follows that of MoS2, but the slight intensity difference in inversion vdWHs means that the substrate's dielectric properties may induce doping on the bottom layer. This paper provides fundamental understanding of phonon and exciton properties of such artificially formed vdWHs structures, which is important for new insights into manipulating the performances of potential devices. KEYWORDS: WS2/MoS2 vdWH, MoS2/WS2 vdWH, Raman spectroscopy, PL spectroscopy, interlayer coupling, dielectric effects
Accession Number: WOS:000812820500001
PubMed ID: 35421305
Author Identifiers:
Author Web of Science ResearcherID ORCID Number
Lian, Ruqian 0000-0002-0777-6325
ISSN: 1944-8244
eISSN: 1944-8252