A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Facilitating Applications of SSVEP-Based BCIs by Within-Subject Information Transfer

2022-07-05

 

Author(s): Liu, XB (Liu, Xiaobing); Liu, BC (Liu, Bingchuan); Dong, GY (Dong, Guoya); Gao, XR (Gao, Xiaorong); Wang, YJ (Wang, Yijun)

Source: FRONTIERS IN NEUROSCIENCE Volume: 16 Article Number: 863359 DOI: 10.3389/fnins.2022.863359 Published: MAY 26 2022

Abstract: The steady-state visual evoked potential based brain-computer interface (SSVEP-BCI) can provide high-speed alternative and augmentative communication in real-world applications. For individuals using a long-term BCI, within-subject (i.e., cross-day and cross-electrode) transfer learning could improve the BCI performance and reduce the calibration burden. To validate the within-subject transfer learning scheme, this study designs a 40-target SSVEP-BCI. Sixteen subjects are recruited, each of whom has performed experiments on three different days and has undergone the experiments of the SSVEP-BCIs based on the dry and wet electrodes. Several transfer directions, including the cross-day directions in parallel with the cross-electrode directions, are analyzed, and it is found that the transfer learning-based approach can maintain stable performance by zero training. Compared with the fully calibrated approaches, the transfer learning-based approach can achieve significantly better or comparable performance in different transfer directions. This result verifies that the transfer learning-based scheme is well suited for implementing a high-speed zero-training SSVEP-BCI, especially the dry electrode-based SSVEP-BCI system. A validation experiment of the cross-day wet-to-dry transfer, involving nine subjects, has shown that the average accuracy is 85.97 +/- 5.60% for the wet-to-dry transfer and 77.69 +/- 6.42% for the fully calibrated method with dry electrodes. By leveraging the electroencephalography data acquired on different days by different electrodes via transfer learning, this study lays the foundation for facilitating the long-term usage of the SSVEP-BCI and advancing the frontier of the dry electrode-based SSVEP-BCI in real-world applications.

Accession Number: WOS:000811367700001

PubMed ID: 35720721

eISSN: 1662-453X

Full Text: https://www.frontiersin.org/articles/10.3389/fnins.2022.863359/full



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明