A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

eldBETA : A Large Eldercare-oriented Benchmark Database of SSVEP-BCI for the Aging Population

2022-06-16

 

Author(s): Liu, BC (Liu, Bingchuan); Wang, YJ (Wang, Yijun); Gao, XR (Gao, Xiaorong); Chen, XG (Chen, Xiaogang)

Source: SCIENTIFIC DATA Volume: 9 Issue: 1 Article Number: 252 DOI: 10.1038/s41597-022-01372-9 Published: MAY 31 2022

Abstract: Global population aging poses an unprecedented challenge and calls for a rising effort in eldercare and healthcare. Steady-state visual evoked potential based brain-computer interface (SSVEP-BCI) boasts its high transfer rate and shows great promise in real-world applications to support aging. Public database is critically important for designing the SSVEP-BCI systems. However, the SSVEP-BCI database tailored for the elder is scarce in existing studies. Therefore, in this study, we present a large eldercare-oriented BEnchmark database of SSVEP-BCI for The Aging population (eldBETA). The eldBETA database consisted of the 64-channel electroencephalogram (EEG) from 100 elder participants, each of whom performed seven blocks of 9-target SSVEP-BCI task. The quality and characteristics of the eldBETA database were validated by a series of analyses followed by a classification analysis of thirteen frequency recognition methods. We expect that the eldBETA database would provide a substrate for the design and optimization of the BCI systems intended for the elders.

Accession Number: WOS:000803898700001

PubMed ID: 35641547

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Liu, Bingchuan                  0000-0001-5988-6051

eISSN: 2052-4463

Full Text: https://www.nature.com/articles/s41597-022-01372-9



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明