A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

ViP: A Hierarchical Parallel Vision Processor for Hybrid Vision Chip

2022-06-16

 

Author(s): Zheng, XM (Zheng, Xuemin); Cheng, L (Cheng, Li); Zhao, MX (Zhao, Mingxin); Luo, Q (Luo, Qian); Li, HL (Li, Honglong); Dou, RJ (Dou, Runjiang); Yu, SM (Yu, Shuangming); Wu, NJ (Wu, Nanjian); Liu, LY (Liu, Liyuan)

Source: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS Volume: 69 Issue: 6 Pages: 2957-2961 DOI: 10.1109/TCSII.2022.3156945 Published: JUN 2022

Abstract: Nowadays, the vision chip bridging sensing and processing has been extensively employed in high-speed image processing, owing to its excellent performance, low power consumption, and economical cost. However, there is a dilemma in designing processors to support conventional computer vision algorithms and neural networks since the two algorithms have a non-trivial trade-off in proposing a unified architecture. By analyzing computation properties, we propose a novel hierarchical parallel vision processor (ViP) for hybrid vision chips to accelerate both traditional computer vision (CV) and neural network (NN). The ViP architecture includes three parallelism levels: PE for pixel-centric, computing core (CC) for block, and vision core (VC) for global. PEs contain dedicated computing units and data paths for convolution operations without degrading its flexibility. Each CC is driven by customized SIMD instructions and can be dynamically connected for meeting block parallelism requirements. ViP is fabricated in 65nm CMOS technology and achieves a peak performance of 614.4 GOPS and an energy efficiency of 640 GOPS/W at 200 MHz clock frequency. Notably, several experiments on CV and NN are performed, illustrating an ultra-low latency in executing hybrid algorithms.

Accession Number: WOS:000804726500081

ISSN: 1549-7747

eISSN: 1558-3791

Full Text: https://ieeexplore.ieee.org/document/9729402

 

 

 



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明