A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Flexible Artificial Optoelectronic Synapse based on Lead-Free Metal Halide Nanocrystals for Neuromorphic Computing and Color Recognition

2022-06-16

 

Author(s): Li, Y (Li, Ying); Wang, JH (Wang, Jiahui); Yang, Q (Yang, Qing); Shen, GZ (Shen, Guozhen)

Source: ADVANCED SCIENCE Article Number: 2202123 DOI: 10.1002/advs.202202123 Early Access Date: JUN 2022

Abstract: Optoelectronic synapses combining optical-sensing and synaptic functions are playing an increasingly vital role in the neuromorphic computing systems development, which can efficiently process visual information and complex recognition, memory, and learning. Metal halides are considered promising candidates for synaptic devices due to their excellent optoelectronic properties. However, the toxicity of lead and the further development of device functions are the recognized problems at present. Herein, a flexible optoelectronic synapses system based on high-quality lead-free Cs3Bi2I9 nanocrystals is demonstrated, in which the carrier confinement caused by the band mismatching between the Cs3Bi2I9 and the organic semiconductor layer provides the possibility to simulate synaptic behaviors. The synaptic functions including long/short-term memory and learning-forgetting-relearning are demonstrated in this device and visual perception, visual memory, and color recognition functions are successfully implemented. Additionally, the flexible device exhibits excellent robustness and can realize imaging of light distribution under curved hemispheres similar to the human eye. Finally, through the simulation based on an artificial neural network algorithm, the device successfully realizes the high-precision recognition of handwritten digital images and possesses a strong fault tolerant capability even in bending states. These results are expected to drive the practical progress of metal halide for neuromorphic computing.

Accession Number: WOS:000806008300001

PubMed ID: 35661449

eISSN: 2198-3844

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/advs.202202123



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明