A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Fast light propagating waveguide composed of heterogeneous metamaterials

2022-06-16

 

Author(s): He, Z (He, Zhen); Ma, HX (Ma, Huanxi); Huang, RM (Huang, Ruimin); Zhuang, FJ (Zhuang, Fengjiang); Su, SJ (Su, Shaojian); Lin, ZL (Lin, Zhili); Qiu, WB (Qiu, Weibin); Huang, BJ (Huang, Beiju); Kan, Q (Kan, Qiang)

Source: OPTIK Volume: 262 Article Number: 169326 DOI: 10.1016/j.ijleo.2022.169326 Published: JUL 2022

Abstract: A symmetrical three-layer fast light waveguide based on photonic crystal heterostructure is proposed in this article. Two types of photonic crystal where their effective optical parameters such as permittivity and permeability are variable from negative to positive at vicinity of the "Dirac-like" point frequency, are designed. Then the symmetrical three-layer light waveguide composed of these two different photonic crystals (heterogeneous structure at the junction between the cladding and the core) are constructed. By analyzing the anomalous dispersion mode of this waveguide, numerically calculated the group velocity to be negative. The light propagation effect of the waveguide is simulated, and it shows that the waveguide can confine light to the core layer well. In addition, observing the backward moving behavior of the wave packet by incident modulated gaussian pulses envelope, further verifying the generation of fast light. These numerical simulation results agree well the analytical analysis. The proposed waveguide structures in this article may improve the sensitivity of optical instruments and offer potential applications in the fields of integrated photonic circuits, on-chip optical interconnect, and fast optical communication and transmission.

Accession Number: WOS:000806557000005

ISSN: 0030-4026

eISSN: 1618-1336

Full Text: https://www.sciencedirect.com/science/article/pii/S0030402622006568?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明