A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Multimodal Unknown Surface Material Classification and Its Application to Physical Reasoning

2022-05-06

 

Author(s): Wei, JH (Wei, Junhang); Cui, SW (Cui, Shaowei); Hu, JY (Hu, Jingyi); Hao, P (Hao, Peng); Wang, S (Wang, Shuo); Lou, Z (Lou, Zheng)

Source: IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS Volume: 18 Issue: 7 Pages: 4406-4416 DOI: 10.1109/TII.2021.3126601 Published: JUL 2022

Abstract: Unknown surface material classification (SMC) can inform a robot about material properties, enabling it to interact with environments appropriately. Recent research has leveraged multimodal data using deep learning to improve the performance of SMC. In this article, we present a deep learning model, multimodal temporal convolutional neural network (MTCNN), which integrates energy spectrum, dilated convolutions, and sequence poolings into a unified network architecture. The proposed model can learn material representations from auditory and multitactile (i.e., acceleration, normal force, and friction force) data generated by dragging a tool along surfaces, and distinguish unknown object surface materials into categories. For surface material data collection, a tool is also designed to detect different object surfaces. The performance of MTCNN is evaluated on a public dataset and the highest classification accuracy is 87.55%. A robotic curling example is provided to illustrate how the presented model helps the robot in manipulation.

Accession Number: WOS:000784218500013

ISSN: 1551-3203

eISSN: 1941-0050

Full Text: https://ieeexplore.ieee.org/document/9609678



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明