A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

A Pre-Gelled EEG Electrode and Its Application in SSVEP-Based BCI

2022-04-22

 

Author(s): Pei, WH (Pei, Weihua); Wu, XT (Wu, Xiaoting); Zhang, X (Zhang, Xiang); Zha, AH (Zha, Aihua); Tian, S (Tian, Sen); Wang, YJ (Wang, Yijun); Gao, XR (Gao, Xiaorong)

Source: IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Volume: 30 Pages: 843-850 DOI: 10.1109/TNSRE.2022.3161989 Published: 2022

Abstract: Electroencephalogram (EEG) electrodes are critical devices for brain-computer interface and neurofeedback. A pre-gelled (PreG) electrode was developed in this paper for EEG signal acquisition with a short installation time and good comfort. A hydrogel probe was placed in advance on the Ag/AgCl electrode before wearing the EEG headband instead of a time-consuming gel injection after wearing the headband. The impedance characteristics were compared between the PreG electrode and the wet electrode. The PreG electrode and the wet electrode performed the Brain-Computer Interface (BCI) application experiment to evaluate their performance. The average impedance of the PreG electrode can be decreased to 43 kQ or even lower, which is higher than the wet electrode with an impedance of 8 kQ. However, there is no significant difference in classification accuracy and information transmission rate (ITR) between the PreG electrode and the wet electrode in a 40 target BCI system based on Steady State Visually Evoked Potential (SSVEP). This study validated the efficiency of the proposed PreG electrode in the SSVEP-based BCI. The proposed PreG electrode will be an excellent substitute for wet electrodes in an actual application with convenience and good comfort.

Accession Number: WOS:000778904600004

PubMed ID: 35324444

ISSN: 1534-4320

eISSN: 1558-0210

Full Text: https://ieeexplore.ieee.org/document/9740692



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明