A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Reduction in the Photoluminescence Intensity Caused by Ultrathin GaN Quantum Barriers in InGaN/GaN Multiple Quantum Wells

2022-04-15

 

Author(s): Liu, W (Liu, Wei); Liang, F (Liang, Feng); Zhao, DG (Zhao, Degang); Yang, J (Yang, Jing); Chen, P (Chen, Ping); Liu, ZS (Liu, Zongshun)

Source: CRYSTALS Volume: 12 Issue: 3 Article Number: 339 DOI: 10.3390/cryst12030339 Published: MAR 2022

Abstract: The optical properties of InGaN/GaN violet light-emitting multiple quantum wells with different thicknesses of GaN quantum barriers are investigated experimentally. When the barrier thickness decreases from 20 to 10 nm, the photoluminescence intensity at room temperature increases, which can be attributed to the reduced polarization field in the thin-barrier sample. However, with a further reduction in the thickness to 5 nm, the sample's luminescence intensity decreases significantly. It is found that the strong nonradiative loss process induced by the deteriorated crystal quality and the quantum-tunneling-assisted leakage of carriers may jointly contribute to the enhanced nonradiative loss of photogenerated electrons and holes, leading to a significant reduction in photoluminescence intensity of the sample with nanoscale ultrathin GaN quantum barriers.

Accession Number: WOS:000775652900001

eISSN: 2073-4352

Full Text: https://www.mdpi.com/2073-4352/12/3/339



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明