Flexible alternating current electroluminescent devices integrated with high voltage triboelectric nanogenerators
Author(s): Zhang, SC (Zhang, Shaochun); Qu, CM (Qu, Changming); Xiao, Y (Xiao, Yu); Liu, HY (Liu, Hanyun); Song, GF (Song, Guofeng); Xu, Y (Xu, Yun)
Source: NANOSCALE Volume: 14 Issue: 11 Pages: 4244-4253 DOI: 10.1039/d1nr08203e Early Access Date: FEB 2022 Published: MAR 17 2022
Abstract: Flexible alternating current electroluminescent (ACEL) devices have attracted growing interest as promising wearable displays for their uniformity of light emission, low power consumption, and excellent reliability. However, the requirement of high-voltage power sources for driving ACEL devices greatly impedes their portability and commercialization. Here, we developed flexible ACEL devices integrated with high output-voltage triboelectric nanogenerators (TENG) using easy and low-cost crumpled Al electrodes. The output voltage and current could reach as high as 490 V and 71.74 mu A, corresponding to the maximum instantaneous output power density of 1.503 mW cm(-2), which was demonstrated to power an integrated flexible ACEL patterned display. In addition, through signal acquisition and transmission, ACEL can display the compression frequency of TENG in real time. Such self-powered ACEL devices are very promising as flexible displays in wearable electronics.
Accession Number: WOS:000764214000001
PubMed ID: 35244117
Author Identifiers:
Author Web of Science ResearcherID ORCID Number
zhang, shaochun 0000-0002-0082-163X
Qu, Changming 0000-0002-2501-026X
ISSN: 2040-3364
eISSN: 2040-3372
Full Text: https://pubs.rsc.org/en/content/articlelanding/2022/NR/D1NR08203E