A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Evaluation of interfacial misfit strain field of heterostructures using STEM nano secondary moire method

2022-03-21

 

Author(s): Zhao, Y (Zhao, Yao); Yang, Y (Yang, Yang); Wen, HH (Wen, Huihui); Liu, C (Liu, Chao); Huang, XF (Huang, Xianfu); Liu, ZW (Liu, Zhanwei)

Source: PHYSICAL CHEMISTRY CHEMICAL PHYSICS DOI: 10.1039/d1cp05891f Early Access Date: FEB 2022

Abstract: STEM nano-moire can achieve high-precision deformation measurement in a large field of view. In scanning moire fringe technology, the scanning line and magnification of the existing transmission electron microscope (TEM) cannot be changed continuously. The frequency of the crystal lattice is often difficult to match with the fixed frequency of the scanning line, resulting in mostly too dense fringes that cannot be directly observed; thus, the calculation error is relatively large. This problem exists in both the STEM moire method and the multiplication moire method. Herein, we propose the STEM secondary nano-moire method, i.e., a digital grating of similar frequency is superimposed on or sampling the primary moire fringe or multiplication moire to form the secondary moire. The formation principle of the secondary moire is analyzed in detail, with deduced theoretical relations for measuring the strain of STEM secondary nano-moire fringe. The advantages of sampling secondary moire and digital secondary moire are compared. The optimal sampling interpolation function is obtained through error analysis. This method expands the application range of the STEM moire method and has better practicability. Finally, the STEM secondary nano-moire is used to accurately measure the strain field at the Si/Ge heterostructure interface, and the theoretical strain field calculated by the dislocation model is analyzed and compared. The obtained results are more compatible with the P-N dislocation model. Our work provides a practical method for the accurate evaluation of the interface characteristics of heterostructures, which is an important basis for judging the photoelectric performance of the entire device and the optimal design of the heterostructures.

Accession Number: WOS:000764254700001

PubMed ID: 35244645

ISSN: 1463-9076

eISSN: 1463-9084

Full Text: https://pubs.rsc.org/en/content/articlelanding/2022/CP/D1CP05891F



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明