A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Progress of GaN-Based Optoelectronic Devices Integrated with Optical Resonances

2022-03-11

 

Author(s): Zhao, LX (Zhao, Lixia); Liu, C (Liu, Chang); Wang, KY (Wang, Kaiyou)

Source: SMALL Article Number: 2106757 DOI: 10.1002/smll.202106757 Early Access Date: FEB 2022

Abstract: Being direct wide bandgap, III-nitride (III-N) semiconductors have many applications in optoelectronics, including light-emitting diodes, lasers, detectors, photocatalysis, etc. Incorporation of III-N semiconductors with high-efficiency optical resonances including surface plasmons, distributed Bragg reflectors and micro cavities, has attracted considerable interests for upgrading their performance, which can not only reveal the new coupling mechanisms between optical resonances and quasiparticles, but also unveil the shield of novel optoelectronic devices with superior performances. In this review, the content covers the recent progress of GaN-based optoelectronic devices integrated with plasmonics and/or micro resonators, including the LEDs, photodetectors, solar cells, and light photocatalysis. The authors aim to provide an inspiring insight of recent remarkable progress and breakthroughs, as well as a promising prospect for the future highly-integrated, high speed, and efficient GaN-based optoelectronic devices.

Accession Number: WOS:000761246900001

PubMed ID: 35218296

Author Identifiers:

Author Web of Science ResearcherID ORCID Number

zhao, lixia 0000-0002-0466-247X

ISSN: 1613-6810

eISSN: 1613-6829

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/smll.202106757



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明