A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Ionic Liquid Passivation Eliminates Low-n Quantum Well Domains in Blue Quasi-2D Perovskite Films

2022-03-03

 

Author(s): Zhu, NN (Zhu, Ningning); Xu, KX (Xu, Kaixuan); Xing, J (Xing, Jun); Zhang, J (Zhang, Jun); Dai, JN (Dai, Jiangnan)

Source: ACS APPLIED MATERIALS & INTERFACES Volume: 13 Issue: 48 Pages: 57540-57547 DOI: 10.1021/acsami.1c15879 Published: DEC 8 2021

Abstract: In quasi-two-dimensional (quasi-2D) perovskite films, carriers transport in the cascade structural systems involving various quantum wells (QWs) n, but their efficiency is limited by the severe nonradiative recombination within plentiful n = 1, 2, 3 domains induced by traditional ammonium bromide passivation. Here, we fabricate the quasi-2D films with the elimination of n = 1, 2, 3 domains by introducing the ionic liquid n-butylamine acetate (BAAc) instead of n-butylamine hydrobromide (BABr), which increases the photoluminescence quantum yield (PLQY) and lowers the surface roughness of films. Due to the anion exchange between BAAc and methylamine hydrobromide (MABr), BAAc exhibits a sole passivation effect on methylamine-based perovskites. As a result, the ionic liquid-derived perovskite light-emitting diodes (PeLEDs) display blue emission at 479 nm and show significantly improved performance on external quantum efficiency (EQE) and luminance. Our finding provides insights into the passivating effect of ionic liquid on quasi-2D perovskites and will benefit fabricating PeLEDs with enhanced performance.

Accession Number: WOS:000752970600074

PubMed ID: 34844410

Author Identifiers:

Author Web of Science ResearcherID ORCID Number

Xing, Jun 0000-0003-4499-4062

Zhang, Jun 0000-0002-9831-6796

Dai, Jiangnan 0000-0001-9805-8726

ISSN: 1944-8244

eISSN: 1944-8252

Full Text: https://pubs.acs.org/doi/10.1021/acsami.1c15879



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明