A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Low-Temperature Direct Growth of Few-Layer Hexagonal Boron Nitride on-Free Substrates

2022-03-03

 

Author(s): Chen, JR (Chen, Jingren); Wang, GK (Wang, Gaokai); Meng, JH (Meng, Junhua); Cheng, Y (Cheng, Yong); Yin, ZG (Yin, Zhigang); Tian, Y (Tian, Yan); Huang, JD (Huang, Jidong); Zhang, SY (Zhang, Siyu); Wu, JL (Wu, Jinliang); Zhang, XW (Zhang, Xingwang)

Source: ACS APPLIED MATERIALS & INTERFACES DOI: 10.1021/acsami.1c22626 Early Access Date: JAN 2022

Abstract: Wide-band-gap layered semiconductor hexagonal boron nitride (h-BN) is attracting intense interest due to its unique optoelectronic properties and versatile applications in deep ultraviolet optoelectronic and two-dimensional electronic devices. However, it is still a great challenge to directly grow high-quality hBN on dielectric substrates, and an extremely high substrate temperature or annealing is usually required. In this work, high quality few-layer h-BN is directly grown on sapphire substrates via ion beam sputtering deposition at a relatively low temperature of 700 degrees C by introducing NH3 into the growth chamber. Such low growth temperature is attributed to the presence of abundant active N species, originating from the decomposition of NH3 under ion beam irradiation. To further tailor the properties of h-BN, carbon was introduced into the h-BN layer by simultaneously introducing CH4 and NH3 during the growth process, indicating the wide applicability of this approach. Moreover, a deep ultraviolet (DUV) photodetector is also fabricated from a C-doped h-BN layer and exhibits superior performance compared with an intrinsic h-BN device.

Accession Number: WOS:000757838600001

PubMed ID: 35080841

ISSN: 1944-8244

eISSN: 1944-8252

Full Text: https://pubs.acs.org/doi/10.1021/acsami.1c22626



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明