A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Assessment of Occlusal Force and Local Gas Release Using Degradable Bacterial Cellulose/Ti3C2Tx MXene Bioaerogel for Oral Healthcare

2022-02-24

 

Author(s): Jin, XJ (Jin, Xiujuan); Li, LL (Li, Linlin); Zhao, SF (Zhao, Shufang); Li, XH (Li, Xiaohong); Jiang, K (Jiang, Kai); Wang, LL (Wang, Lili); Shen, GZ (Shen, Guozhen)

Source: ACS NANO Volume: 15 Issue: 11 Pages: 18385-18393 DOI: 10.1021/acsnano.1c07891 Published: NOV 23 2021

Abstract: Dental diseases resulting from movement disorders and volatile gases are very common. The classic method for detecting occlusal force is effective; however, its function is one-time rather than real-time monitoring, and the technology is very time-consuming. Herein, we report a multifunctional, flexible, and degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for the accurate detection of occlusal force and early diagnosis of periodontal diseases. Combining the mechanical properties of MXene and the abundant functional groups of bacterial cellulose, 3D porous bioaerogels exhibit both pressure-sensitive and ammonia (NH3)-sensitive responses. By integrating these substances into a flexible array, the resulting device can distinguish the intensity, location, and even the time sequence of the occlusion force; moreover, it can provide NH3 gas and occlusion force response signals. Therefore, this technology is promising for both disease diagnosis and oral health. In addition, the introduction of a renewable biomaterial allows the bioaerogel to degrade completely using a low-concentration hydrogen peroxide solution, making the device environmentally friendly and satisfying the demands for sustainable development.

Accession Number: WOS:000747115200113

PubMed ID: 34739207

ISSN: 1936-0851

eISSN: 1936-086X

Full Text: https://pubs.acs.org/doi/10.1021/acsnano.1c07891



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明