A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

BWGAN-GP: An EEG Data Generation Method for Class Imbalance Problem in RSVP Tasks

2022-02-17

 

Author(s): Xu, M (Xu, Meng); Chen, YF (Chen, Yuanfang); Wang, YJ (Wang, Yijun); Wang, D (Wang, Dan); Liu, ZH (Liu, Zehua); Zhang, LJ (Zhang, Lijian)

Source: IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Volume: 30 Pages: 251-263 DOI: 10.1109/TNSRE.2022.3145515 Published: 2022

Abstract: In the rapid serial visual presentation (RSVP) classification task, the data from the target and non-target classes are incredibly imbalanced. These class imbalance problems (CIPs) can hinder the classifier from achieving better performance, especially in deep learning. This paper proposed a novel data augmentation method called balanced Wasserstein generative adversarial network with gradient penalty (BWGAN-GP) to generate RSVP minority class data. The model learned useful features from majority classes and used them to generate minority-class artificial EEG data. It combines generative adversarial network (GAN) with autoencoder initialization strategy enables this method to learn an accurate class-conditioning in the latent space to drive the generation process towards the minority class. We used RSVP datasets from nine subjects to evaluate the classification performance of our proposed generated model and compare them with those of other methods. The average AUC obtained with BWGAN-GP on EEGNet was 94.43%, an increase of 3.7% over the original data. We also used different amounts of original data to investigate the effect of the generated EEG data on the calibration phase. Only 60% of original data were needed to achieve acceptable classification performance. These results show that the BWGAN-GP could effectively alleviate CIPs in the RSVP task and obtain the best performance when the two classes of data are balanced. The findings suggest that data augmentation techniques could generate artificial EEG to reduce calibration time in other brain-computer interfaces (BCI) paradigms similar to RSVP.

Accession Number: WOS:000750469200010

PubMed ID: 35073267

Author Identifiers:

Author Web of Science ResearcherID ORCID Number

xu, meng 0000-0002-3634-0547

ISSN: 1534-4320

eISSN: 1558-0210

Full Text: https://ieeexplore.ieee.org/document/9690467



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明